8,446 research outputs found

    Ab-initio procedure for effective models of correlated materials with entangled band structure

    Full text link
    We present a first-principles method for deriving effective low-energy models of electrons in solids having entangled band structure. The procedure starts with dividing the Hilbert space into two subspaces, the low-energy part ("dd space'') and the rest of the space ("rr space''). The low-energy model is constructed for the dd space by eliminating the degrees of freedom of the rr space. The thus derived model contains the strength of electron correlation expressed by a partially screened Coulomb interaction, calculated in the constrained random-phase-approximation (cRPA) where screening channels within the dd space, PdP_d, are subtracted. One conceptual problem of this established downfolding method is that for entangled bands it is not clear how to cut out the dd space and how to distinguish PdP_d from the total polarization. Here, we propose a simple procedure to overcome this difficulty. In our scheme, the dd subspace is cut out from the Hilbert space of the Kohn Sham eigenfunctions with the help of a procedure to construct a localized Wannier basis. The rr subspace is constructed as the complementary space orthogonal to the dd subspace. After this disentanglement, PdP_d becomes well defined. Using the disentangled bands, the effective parameters are uniquely determined in the cRPA. The method is successfully applied to 3dd transition metals.Comment: 14 pages, 4 figure

    Realistic many-body models for Manganese Monoxide under pressure

    Full text link
    In materials like transition metals oxides where electronic Coulomb correlations impede a description in terms of standard band-theories, the application of genuine many-body techniques is inevitable. Interfacing the realism of density-functional based methods with the virtues of Hubbard-like Hamiltonians, requires the joint ab initio construction of transfer integrals and interaction matrix elements (like the Hubbard U) in a localized basis set. In this work, we employ the scheme of maximally localized Wannier functions and the constrained random phase approximation to create effective low-energy models for Manganese monoxide, and track their evolution under external pressure. We find that in the low pressure antiferromagnetic phase, the compression results in an increase of the bare Coulomb interaction for specific orbitals. As we rationalized in recent model considerations [Phys. Rev. B 79, 235133 (2009)], this seemingly counter-intuitive behavior is a consequence of the delocalization of the respective Wannier functions. The change of screening processes does not alter this tendency, and thus, the screened on-site component of the interaction - the Hubbard U of the effective low-energy system - increases with pressure as well. The orbital anisotropy of the effects originates from the orientation of the orbitals vis-a-vis the deformation of the unit-cell. Within the high pressure paramagnetic phase, on the other hand, we find the significant increase of the Hubbard U is insensitive to the orbital orientation and almost exclusively owing to a substantial weakening of screening channels upon compression.Comment: 13 pages, 6 figure

    Supersymmetric Matrix model on Z-orbifold

    Full text link
    We find that the IIA Matrix models defined on the non-compact C3/Z6C^3/Z_6, C2/Z2C^2/Z_2 and C2/Z4C^2/Z_4 orbifolds preserve supersymmetry where the fermions are on-mass-shell Majorana-Weyl fermions. In these examples supersymmetry is preserved both in the orbifolded space and in the non-orbifolded space at the same time. The Matrix model on C3/Z6C^3/Z_6 orbifold has the same N=2{\cal N}=2 supersymmetry as the case of C3/Z3C^3/Z_3 orbifold which was pointed out previously. On the other hand the Matrix models on C2/Z2C^2/Z_2 and C2/Z4C^2/Z_4 orbifold have a half of the N=2{\cal N}=2 supersymmetry. We further find that the Matrix model on C2/Z2C^2/Z_2 orbifold with a parity-like identification preserves N=2{\cal N}=2 supersymmetry.Comment: 21 pages, no figur

    Theoretical evidence for strong correlations and incoherent metallic state in FeSe

    Full text link
    The role of electronic Coulomb correlations in iron-based superconductors is an important open question. We provide theoretical evidence for strong correlation effects in the FeSe compound, based on dynamical mean field calculations. A lower Hubbard band is found in the spectral properties. Moreover, together with significant orbital-dependent mass enhancements, we find that the normal state is a bad metal over an extended temperature range, implying a non-Fermi liquid. Predictions for angle-resolved photoemission spectroscopy are made.Comment: 5 pages, 5 figures, published versio

    Valence Instability and Superconductivity in Heavy Fermion Systems

    Full text link
    Many cerium-based heavy fermion (HF) compounds have pressure-temperature phase diagrams in which a superconducting region extends far from a magnetic quantum critical point. In at least two compounds, CeCu2Si2 and CeCu2Ge2, an enhancement of the superconducting transition temperature was found to coincide with an abrupt valence change, with strong circumstantial evidence for pairing mediated by critical valence, or charge transfer, fluctuations. This pairing mechanism, and the valence instability, is a consequence of a f-c Coulomb repulsion term U_fc in the hamiltonian. While some non-superconducting Ce compounds show a clear first order valence instability, analogous to the Ce alpha-gamma transition, we argue that a weakly first order valence transition may be a general feature of Ce-based HF systems, and both magnetic and critical valence fluctuations may be responsible for the superconductivity in these systems.Comment: 11 pages, 16 figure

    Roles of Critical Valence Fluctuations in Ce- and Yb-Based Heavy Fermion Metals

    Full text link
    The roles of critical valence fluctuations of Ce and Yb are discussed as a key origin of several anomalies observed in Ce- and Yb-based heavy fermion systems. Recent development of the theory has revealed that a magnetic field is an efficient control parameter to induce the critical end point of the first-order valence transition. Metamagnetism and non-Fermi liquid behavior caused by this mechanism are discussed by comparing favorably with CeIrIn5, YbAgCu4, and YbIr2Zn20. The interplay of the magnetic order and valence fluctuations offers a key concept for understanding Ce- and Yb-based systems. It is shown that suppression of the magnetic order by enhanced valence fluctuations gives rise to the coincidence of the magnetic-transition point and valence-crossover point at absolute zero as a function of pressure or magnetic field. The interplay is shown to resolve the outstanding puzzle in CeRhIn5 in a unified way. The broader applicability of this newly clarified mechanism is discussed by surveying promising materials such as YbAuCu4, beta-YbAlB4, and YbRh2Si2.Comment: 17 pages, 8 figures, invited paper in special issue on strongly correlated electron system

    The effects of k-dependent self-energy in the electronic structure of correlated materials

    Full text link
    It is known from self-energy calculations in the electron gas and sp materials based on the GW approximation that a typical quasiparticle renormalization factor (Z factor) is approximately 0.7-0.8. Band narrowing in electron gas at rs = 4 due to correlation effects, however, is only approximately 10%, significantly smaller than the Z factor would suggest. The band narrowing is determined by the frequency-dependent self-energy, giving the Z factor, and the momentum-dependent or nonlocal self-energy. The results for the electron gas point to a strong cancellation between the effects of frequency- and momentum-dependent self-energy. It is often assumed that for systems with a nar- row band the self-energy is local. In this work we show that even for narrow-band materials, such as SrVO3, the nonlocal self-energy is important.Comment: 7 pages, 6 figure

    Quantum Valence Criticality as Origin of Unconventional Critical Phenomena

    Full text link
    It is shown that unconventional critical phenomena commonly observed in paramagnetic metals YbRh2Si2, YbRh2(Si0.95Ge0.05)2, and beta-YbAlB4 is naturally explained by the quantum criticality of Yb-valence fluctuations. We construct the mode coupling theory taking account of local correlation effects of f electrons and find that unconventional criticality is caused by the locality of the valence fluctuation mode. We show that measured low-temperature anomalies such as divergence of uniform spin susceptibility \chi T^{-\zeta) with ζ 0.6\zeta~0.6 giving rise to a huge enhancement of the Wilson ratio and the emergence of T-linear resistivity are explained in a unified way.Comment: 5 pages, 3 figures, to be published in Physical Review Letter

    A theory of new type of heavy-electron superconductivity in PrOs_4Sb_12: quadrupolar-fluctuation mediated odd-parity pairings

    Full text link
    It is shown that unconventional nature of superconducting state of PrOs_4Sb_12, a Pr-based heavy electron compound with the filled-Skutterudite structure, can be explained in a unified way by taking into account the structure of the crystalline-electric-field (CEF) level, the shape of the Fermi surface determined by the band structure calculation, and a picture of the quasiparticles in f2^{2}-configuration with magnetically singlet CEF ground state. Possible types of pairing are narrowed down by consulting recent experimental results. In particular, the chiral "p"-wave states such as p_x+ip_y is favoured under the magnetic field due to the orbital Zeeman effect, while the "p"-wave states with two-fold symmetery such as p_x can be stabilized by a feedback effect without the magnetic field. It is also discussed that the double superconducting transition without the magnetic field is possible due to the spin-orbit coupling of the "triplet" Cooper pairs in the chiral state.Comment: 12 pages, 2 figures, submitted to J. Phys.: Condens. Matter Lette
    corecore